## 6-HYDROXY-4-METHOXY-5-METHYLCOUMARIN FROM GERBERA JAMESONII\*

## AHMED F. HALIM, † EL-SAYED M. MARWAN † and FERDINAND BOHLMANN ‡

† Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; ‡ Institute for Organic Chemistry, Technical University Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12, W. Germany

(Received 5 March 1980)

**Key Word Index**—*Gerbera jamesonii*: Compositae; 6-hydroxy-4-methoxy-5-methylcoumarin; cyanogenic glucoside; prulanrasin.

So far from Gerbera jamesonii Bolus only widespread acetylenes [1] have been isolated. In addition to the acetylenes [1], other Gerbera species contain typical acetophenone derivatives [2] and also representatives of the unusual 5-methylcoumarins [2-4]. An investigation of a larger quantity of the aerial parts of G. jamesonii afforded a glucoside, which is probably prulaurasin (1)[5], its structure following from the spectral data of its tetraacetate 2. Furthermore, a simple coumarin, which turns out to be 3, was isolated. Acetylation afforded the acetate 4. Careful comparison of the <sup>1</sup>H NMR data of several substituted 5methylcoumarins [6] clearly shows that the free hydroxyl can only be placed at C-6. In agreement with this assumption, a typical shielding effect of the acetate group (5-methyl) was observed. Also the chemical shift of the methoxy group is only in agreement with its placement in the 4-position [6].

## EXPERIMENTAL

The powdered air-dried aerial parts (1 kg) were extracted first with petrol and further with EtOH- $\rm H_2O$  (7:3). The extract obtained was concd *in vacuo*, diluted with  $\rm H_2O$  and extracted with Et<sub>2</sub>O (A) and with EtOAc (B). Column chromatography (SiO<sub>2</sub>) of A using CHCl<sub>3</sub> and increasing amounts of EtOAc afforded 50 mg 3, while B (EtOAc-MeOH, 9:1) gave 700 mg 1, colourless crystals, mp 120-121° (EtOAc-CHCl<sub>3</sub>, lit. [5] 121-122°). Acetylation (pyridine, Ac<sub>2</sub>O) afforded the tetraacetate 2, colourless crystals, mp 142-143°. MS  $\it m/e$  (rel. int.): M $^+$ —, 347 (8) (M $^-$  PhCHCN), 331 (6) (M $^-$  PhCHCO)CN), 116, 050 (100) ( $\rm C_8H_6N=$ 



s, Ph). 5.53 (s, 7-H), 4.54 (d, J = 8 Hz, 1'-H), 5.13 (m, 2'-4-H), 3.64 (m, 5'-H), 4.27 (dd, J'' = 11, 4.5 Hz,  $6_1'$ -H), 4.15 (dd, J = 11, 2 Hz,  $6_2'$ -H), 2.13, 2.02, 1.99 (6H, s, OAc).

6-Hydroxy-4-methoxy-5-methylcoumarin (3). Colourless crystals, mp 267–268°. IR  $v_{\rm max}^{\rm KBr}$  cm  $^{-1}$ : 3300 (OH) 1690, 1610, 1575 (coumarin). MS m/e (rel. int.): 206 (100) (M  $^{+}$ ): 191 (11) (M - 'Me); 178 (40) (M - CO); 163 (70) (178 - Me);  $^{1}$ H NMR (CDCl<sub>3</sub>/DMSO, 270 MHz): δ 5.60 (s, 3-H), 6.91 (d, J=9 Hz, 7-H), 7.05 (d, J=9 Hz, 8-H), 2.44 (s, 9-H), 3.91 (s, OMe), 9.36 (br. s, OH). 2 mg 3 were heated with 0.1 ml Ac<sub>2</sub>O for 1 hr at 70°. After evapn 2 mg 4 were obtained.  $^{1}$ H NMR (CDCl<sub>3</sub>, 270 MHz): 5.71 (s, 3-H), 7.20 (s, 7.8-H), 2.33 (s, 9-H), 3.97 (s, OMe), 2.22 (OAc).

Ph OGIc

RO

RO

Me OMe

1

$$3 R = H$$
 $4 R = Ac$ 

## REFERENCES

- Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) Naturally Occurring Acetylenes. Academic Press, London.
- 2. Bohlmann, F., Zdero, C. and Le Van, N. (1979) *Phytochemistry* 18, 99.
- Bohlmann, F., Zdero, C. and Franke, H. (1973) Chem. Ber. 106, 382
- 4. Bohlmann, F. and Grenz, M. (1975) Chem. Ber. 108, 26.
- 5. Herissey, H. (1905) C. R. 141. 959.
- 6. Bohlmann, F. and Wienhold, C. (1979) Chem. Ber. 112, 2394.

<sup>\*</sup> Part 21 in the series "Naturally Occurring Coumarin Derivatives". For Part 20 see Mahmoud, Z. F., Sarg, T. M., Amer, M. E., Khafagy, S. M. and Bohlmann, F. (1980) *Phytochemistry* 19, 2029.